185

Quantum Compass of Migratory Birds

Mouritsen, H., and Hore, P.J. 2012. Te magnetic retina: light-dependent and trigeminal magnetorecep­

tion in migratory birds. Curr Opin Neurobiol 22(2):343–352.

Mouritsen, H., and Ritz, T. 2005. Magnetoreception and its use in bird navigation. Curr Opin Neurobiol

15(4):406–414.

Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., and Jarvis, E.D. 2005. Night-vision brain area in

migratory songbirds. Proc Natl Acad Sci USA 102:(23)8339–8344.

Mouritsen, H., Janssen-Bienhold, U., Liedvogel, M., Feenders, G., Stalleicken, J., Dirks, P., and Weiler,

R. 2004. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds

during magnetic orientation. Proc Natl Acad Sci USA 101(39):14294–14299.

Muheim, R., Bäckman, J., and Akesson, S. 2002. Magnetic compass orientation in European robins is

dependent on both wavelength and intensity of light. J Exp Biol 205:3845–3856.

Muheim, R., and Liedvogel, M. 2015. Te light-dependent magnetic compass. In: Photobiology, Te Science

of Light and Life, 323. Björn, L.O. (Ed.), Springer Science+Business Media, New York, pp. 323–334.

Müller, P., and Ahmad, M. 2011. Light-activated cryptochrome reacts with molecular oxygen to form a

favin-superoxide radical pair consistent with magnetoreception. J Biol Chem 286(24):2103321040.

Müller, F., Brüstlein, M., Hemmerich, P., Massey, V., and Walker, W.H. 1972. Light-absorption studies

on neutral favin radicals. Eur J Biochem 25(3):573–580.

Murakami, M., Maeda, K., and Arai, T. 2002. Structure and kinetics of the intermediate biradicals gen­

erated from intramolecular electron transfer reaction of FAD studied by an action spectrum of the

magnetic feld efect. Chem Phys Lett 362:123–129.

Murakami, M., Maeda, K., and Arai, T. 2005. Dynamics of intramolecular electron transfer reac­

tion of FAD studied by magnetic feld efects on transient absorption spectra. J Phys Chem A

109(26):5793–5800.

Muus, L., Atkins, P., McLauchlan, K., and Pedersen, J. 1977. Chemically Induced Magnetic Polarization.

D. Reidel Publishing, Dordrecht.

Neil, S.R., Li, J., Sheppard, D.M., Storey, J., Maeda, K., Henbest, K.B., Hore, P.J., Timmel, C.R., and

Mackenzie, S.R. 2014. Broadband cavity-enhanced detection of magnetic feld efects in chemical

models of a cryptochrome magnetoreceptor. J Phys Chem B 118(15):4177–4184.

Nielsen, C., Kattnig, D.R., Sjulstok, E., Hore, P.J., and Solov’yov, I.A. 2017. Ascorbic acid may not be

involved in cryptochrome-based magnetoreception. J R Soc Interface 14(137):20170657.

Nießner, C., Denzau, S., Gross, J.C., Peichl, L., Bischof, H.J., Fleissner, G., Wiltschko, W., and Wiltschko,

R. 2011. Avian ultraviolet/violet cones identifed as probable magnetoreceptors. PLoS One

6(5):e20091.

Nießner, C., Denzau, S., Stapput, K., Ahmad, M., Peichl, L., Wiltschko, W., and Wiltschko, R. 2013.

Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds. J R Soc

Interf 10(88):20130638.

Nießner, C., Gross, J.C., Denzau, S., Peichl, L., Fleissner, G., Wiltschko, W., and Wiltschko, R. 2016.

Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating pas­

serine bird. PLoS One 11(3):e0150377.

Nohr, D., Franz, S., Rodriguez, R., Paulus, B., Essen, L.O., Weber, S., and Schleicher, E. 2016. Extended

electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys

J 111(2):301–311.

Oka, Y. 2015. Spin control related to chemical compass of migratory birds (in Japanese with abstract in

English). Magnet Japan 10(3):140–145.

Orihara, Y., Kamogawa, M., Noda, Y., and Nagao, T. 2019. Is Japanese folklore concerning deep-sea fsh

appearance a real precursor of earthquakes? Bull Seismol Soc Am 109(4):1556–1562.

Ozturk, N., Selby, C.P., Song, S.H., Ye, R., Tan, C., Kao, Y.T., Zhong, D., and Sancar, A. 2009. Comparative

photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry 48:85858593.

Pedersen, J.B., Nielsen, C., and Solov’yov, I.A. 2016. Multiscale description of avian migration: from

chemical compass to behaviour modeling. Sci Rep 6:36709.